Your IP: 3.228.220.31 United States Near: United States

Lookup IP Information

Previous 1 2 3 4 5 6 7 8 Next

Below is the list of all allocated IP address in 151.198.0.0 - 151.198.255.255 network range, sorted by latency.

This article does not cite any references or sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (December 2009) Programming paradigms Agent-oriented Component-based Flow-based Pipelined Concatenative Concurrent computing Data-driven Declarative (contrast: Imperative) Constraint Functional Dataflow Cell-oriented (spreadsheets) Reactive Logic Abductive logic Constraint logic Functional logic Inductive logic Event-driven Service-oriented Time-driven Expression-oriented Feature-oriented Function-level (contrast: Value-level) Generic Imperative (contrast: Declarative) Procedural Language-oriented Discipline-specific Domain-specific Grammar-oriented Dialecting Intentional Metaprogramming Automatic Reflective Attribute-oriented Template Policy-based Non-structured (contrast: Structured) Array (contrast: Scalar) Iterative Nondeterministic Parallel computing Process-oriented Programming in the large/small Semantic Structured (contrast: Non-structured) Modular (contrast: Monolithic) Object-oriented Automata-based By separation of concerns: Aspect-oriented Role-oriented Subject-oriented Class-based Prototype-based Recursive Value-level (contrast: Function-level) This box: view · talk · edit Class-based programming, or more commonly class-orientation, refers to the style of object-oriented programming in which inheritance is achieved by defining classes of objects, as opposed to the objects themselves (compare Prototype-based programming). The most popular and developed model of OOP is a class-based model, as opposed to an object-based model. In this model, objects are entities that combine state (i.e., data), behavior (i.e., procedures, or methods) and identity (unique existence among all other objects). The structure and behavior of an object are defined by a class, which is a definition, or blueprint, of all objects of a specific type. An object must be explicitly created based on a class and an object thus created is considered to be an instance of that class. An object is similar to a structure, with the addition of method pointers, member access control, and an implicit data member which locates instances of the class (i.e. actual objects of that class) in the class hierarchy (essential for runtime inheritance features). Contents 1 Encapsulation 2 Inheritance 3 Critique of class-based models 4 Example languages 5 See also Encapsulation Encapsulation prevents users from breaking the invariants of the class, which is useful because it allows the implementation of a class of objects to be changed for aspects not exposed in the interface without impact to user code. The definitions of encapsulation focus on the grouping and packaging of related information (cohesion) rather than security issues. OOP languages do not normally offer formal security restrictions to the internal object state. Using a method of access is a matter of convention for the interface design. Inheritance See Inheritance, (also inheritance (computer science) for more) Inheritance is typically done by grouping objects into classes, and defining classes as extensions of existing classes, and thus grouping classes into trees or lattices reflecting behavioral commonality. Although the use of classes is the most popular technique for inheritance, another well-known technique is Prototype-based programming. Critique of class-based models Class-based languages, or, to be more precise, typed languages, where subclassing is the only way of subtyping, have been criticized for mixing up implementations and interfaces—the essential principle in object-oriented programming. The critics say one might create a bag class that stores a collection of objects, then extends it to make a new class called a set class where the duplication of objects is eliminated.[who?] Now, a function that takes a bag class may expect that adding two objects increases the size of a bag by two, yet if one passes an object of a set class, then adding two objects may or may not increase the size of a bag by two. The problem arises precisely because subclassing implies subtyping even in the instances where the principle of subtyping, known as the Liskov substitution principle, does not hold. Therefore normally one must distinguish subtyping and subclassing. Most current object-oriented languages distinguish subtyping and subclassing, however some approaches to design do not. Also, another common example is that a person object created from a child class cannot become an object of parent class because a child class and a parent class inherit a person class but class-based languages mostly do not allow to change the kind of class of the object at runtime. For class-based languages, this restriction is essential in order to preserve unified view of the class to its users. The users should not need to care whether one of the implementations of a method happens to cause changes that break the invariants of the class. Such changes can be made by destroying the object and constructing another in its place. Polymorphism can be used to preserve the relevant interfaces even when such changes are done, because the objects are viewed as black box abstractions and accessed via object identity. However, usually the value of object references referring to the object is changed, which causes effects to client code. Example languages Although Simula introduced the class abstraction, the canonical example of a class-based language is Smalltalk. Others include C++, Java and C#. Category:Class-based programming languages provides an exhaustive list. See also Prototype-based programming (contrast) Programming paradigms class (computer science) v · d · eTypes of programming languages Array · Aspect-oriented · Assembly · Class-based · Compiled · Concatenative · Concurrent · Data-structured · Dataflow · Declarative · Domain-specific · Dynamic · Esoteric · Event-driven · Extensible · Functional · High-level · Imperative · Interpreted · Logic · Low-level · Machine · Macro · Metaprogramming · Multi-paradigm · Non-English-based  · Object-based  · Object-oriented · Off-side rule · Pipeline · Procedural · Prototype-based · Reflective · Rule-based · Scripting · Synchronous · Very high-level · Visual